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e 80-90 % of all alarms are false.

* False alarms cause alarm fatigue, a condition that
causes inappropriate reactions by medical staff to
triggered alarms.

e Other efforts have been focused on improving

Outcomes & Contributions
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Our motivation was to design an application that could reduce the number

of false alarms in an ICU. Using a machine learning approach, hundreds of

In this step statistical features will be taken out
of the processed signal above.
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